

Max. Marks: 100

Date: 20.11.2022

ABHIMANYU BATCH PHYSICS : REVISION TEST-3 (SET A) Topic: Ray Optics + Circular Motion + Gravitation + Wave Optics + Rotational Motion + Elasticity

- 1. When light wave suffers reflection at the interface from air to glass, then the change in phase of the reflected wave is equal to
 - (a) zero (b) $\frac{\pi}{2}$ (c) π (d) 2π
- 2. Two identical glass ($\mu_g = 3/2$) equi-convex lenses of focal length f each are kept in contact. The space between the two lenses is filled with water ($\mu_w = 4/3$). The focal length of the combination is
 - (a) f/3 (b) f (c) $\frac{4f}{3}$ (d) $\frac{3f}{4}$
- 3. An air bubble in a glass slab with refractive index 1.5 (near normal incidence) is 5 cm deep when viewed from one surface and 3 cm deep when viewed from the opposite face. The thickness (in cm) of the slab is
 (a) 8 (b) 10 (c) 12 (d) 16
- 4. An person can see objects clearly only when they lie between 50 cm and 400 cm from his eyes. In order to increase the maximum distance of distinct vision to infinity, the type and power of the correcting lens, the person has to use, will be
 - (a) convex, +2.25 D (b) concave, -0.25 D (c) concave, -0.2 D (d) convex, +0.15 D
- 5. An astronomical telescope has objective and eye-piece of focal lengths 40 cm, 4 cm, respectively. To view an object 200 cm away from the objective, the lenses must be separated by a distance
 - (a) 46.0 cm (b) 50.0 cm (c) 54.0 cm (d) 37.3 cm

6. Match the corresponding entries of column I with column II. [Where, m is the magnification produced by the mirror]

		Column I		Column II				
	А.	m = -2	1.	Convex mirror				
	В.	m = -1/2	2.	Concave mirror				
	C.	m = +2	3.	Real image				
	D.	m = +1/2	4.	Virtual image	_			
	(a)	$A \rightarrow 1 \text{ and } 3, B$	$\rightarrow 1$	and 4, $C \rightarrow 1$ and 2, D	\rightarrow 3 and 4	Ļ		
	(b)	$A \rightarrow 1 \text{ and } 4, B$	$\rightarrow 2$	and 3, C \rightarrow 2 and 4, D -	$\rightarrow 2 \text{ and } 3$;		
	(c)	$A \rightarrow 3 \text{ and } 4, B$	$\rightarrow 2$	and 4, C \rightarrow 2 and 3, D \rightarrow	$\rightarrow 1$ and 4	ł		
	(d)	$A \rightarrow 2 \text{ and } 3, B$	$\rightarrow 2$	and 3, C \rightarrow 2 and 4, D -	$\rightarrow 1$ and 4	Ļ		
7.	Calcu	late the focal lengt	h of a	a reading glass of a pers	on, if the	distance of distinct v	vision is 7	5 cm.
	(a)	75.2 cm	(b	o) 25.6 cm	(c)	100.4 cm	(d)	37.5 cm
8.	Rainl	oow is observed wh	en th	e sun is				
	(a)	in front of the ob	oservo	er	(b)	behind the observ	ver	
	(c)	vertically above	the o	bserver	(d)	in any of these po	ositions	
9.	Sun i	s visible a little bef	ore th	ne actual sunrise and unt	til a little a	after the actual sunse	et. This is	due to
	(a)	total internal ref.	lectio	on	(b)	reflection		
	(c)	refraction			(d)	polarisation		
10.	A ma	urk at the bottom of	a liq	uid appears to rise by 0).1 m. The	e depth of the liquid	is 1 m. T	The refractive index of
	the li	quid is						
	(a)	1.33	(b	o) 9/10	(c)	$\frac{10}{9}$	(d)	1.5
						-		
11.	•		imum	n refracting angle of (C =		e	l of the p	rism)
	(a)	60°			(b)	С		
	(c)	2C			(d)	slightly less than	180°	
				Space for R	ougn wo	<u>rk</u>		

- 12. You are given four sources of light each one providing a light of a single colour-red, blue, green and yellow. Suppose the angle of refraction for a beam of yellow light corresponding to a particular angle of incidence at the interface of two media is 90°. Which of the following statement is correct, if the source of yellow light is replaced with that of other lights without changing the angle of incidence?
 - (a) The beam of red light would undergo total internal reflection
 - (b) The beam of red light would bend towards normal while it gets refracted through the second medium
 - (c) The beam of blue light would undergo total internal reflection
 - (d) The beam of green light would bend away from the normal as it gets refracted through the second medium
- 13. When a lens of refractive index μ_1 is placed in a liquid of refractive index μ_2 , then the lens looks to be disappeared only, if

(a) $\mu_1 = \mu_2/2$ (b) $\mu_1 = 3\mu_2/2$ (c) $\mu_1 = \mu_2$ (d) $\mu_1 = 5\mu_2/2$

- 14. When sun light is scattered by minute particles of atmosphere, then the in intensity of light scattered away is proportional to
 - (a) $(\text{wavelength of light})^4$ (b) $(\text{frequency of light})^4$
 - (c) $(wavelength of light)^2$ (d) $(frequency of light)^2$
- 15. If KE of the particle of mass m performing UCM in a circle of radius r is E. Find the acceleration of the particle

(a)
$$\frac{2E}{mr}$$
 (b) $\left(\frac{2E}{mr}\right)^2$ (c) $2mr$ (d) $\frac{4E}{mr}$

- 16. If α is angular acceleration, ω is angular velocity and a is the centripetal acceleration then, which of the following is true?
 - (a) $\alpha = \frac{\omega a}{v}$ (b) $\alpha = \frac{v}{\omega a}$ (c) $\alpha = \frac{av}{\omega}$ (d) $\alpha = \frac{a}{\omega v}$
- 17. A car is moving with speed 30 ms⁻¹ on a circular path of radius 500 m. It speed is increasing at a rate of 2 ms⁻², what is the acceleration of the car?
 - (a) 2 ms^{-2} (b) 2.7 ms^{-2} (c) 1.82 ms^{-2} (d) 9.82 ms^{-2}

18. A particle of mass m is rotating in a plane in circular path of radius r. Its angular momentum is L. The centripetal force acting on the particle is

- $\frac{L^2m}{r}$ (c) $\frac{L^2}{m^2 r^2}$ $\frac{L^2}{mr^3}$ L^2 (d) (b) (a) mr 19. When a ceiling fan is switched off, angular velocity falls to half while it makes 36 rotations. How many more rotations will make before coming to rest? (a) 24 (b) 36 (c) 18 (d) 12 20. An electric fan has blades of length 30 cm as measured from the axis of rotation. If the fan is rotating at 1200 rpm, the acceleration of a point on the tip of the blade is about
 - (a) 1600 ms^{-2} (b) 4737.4 ms^{-2} (c) 2370 ms^{-2} (d) 5055 ms^{-2}

21. A body is just being revolved in a vertical circle of radius R with a uniform speed. The string breaks when the body is at the highest point. The horizontal distance covered by the body after the string breaks is

- (a) 2R (b) R (c) $R\sqrt{2}$ (d) 4R
- 22. The angle of banking is independent of
 - (a) speed of vehicle (b) radius of curvature of road
 - (c) height of inclination (d) None of the above

23. 320 km above the surface of earth, the value of acceleration due to gravity is nearly 90% of its value on the surface of the earth. Its value will be 95% of the value on the earth's surface

- (a) nearly 160 km below the earth's surface (b) nearly 800 km below the earth's surface
- (c) nearly 640 km below the earth's surface (d) nearly 320 km below the earth's surface

24. The acceleration due to gravity at a height $1/20^{\text{th}}$ of the radius of the earth above the earth surface is 9 ms⁻². Its value at a point at an equal distance below the surface of the earth (in ms⁻²) is about

(a) 8.5 (b) 9.5 (c) 9.8 (d) 11.5

- Learning with the Speed of Mumbai and the Tradition of Kota
- 25. A solid sphere of mass M and radius R has a spherical cavity of radius R/2 such that the centre of cavity is at a distance R/2 from the centre of the sphere. A point mass m is placed inside the cavity at a distance R/4 from the centre of sphere. The gravitational pull between the sphere and the point mass m is

(a)
$$\frac{11\text{GMm}}{\text{R}^2}$$
 (b) $\frac{14\text{GMm}}{\text{R}^2}$ (c) $\frac{\text{GMm}}{2\text{R}^2}$ (d) $\frac{\text{GMm}}{\text{R}^2}$

26. A disc of radius R and thickness $\frac{R}{6}$ has moment inertia/about an axis passing through its centre perpendicular to its plane. Disc is melted and reduced into a solid sphere. The moment of inertia of a sphere about its diameter is

(a)
$$\frac{1}{5}$$
 (b) $\frac{1}{6}$ (c) $\frac{1}{32}$ (d) $\frac{1}{64}$

27. Let M be the mass and L be the length of a thin uniform rod. In first case, axis of rotation is passing through centre and perpendicular to the length of the rod. In second case, axis of rotation is passing through one end and perpendicular to the length of the rod. The ratio of radius of gyration in first case to second case is

(a) 1 (b) $\frac{1}{2}$ (c) $\frac{1}{4}$ (d) $\frac{1}{8}$

28. A cord is wound around the circumference of wheel of radius r. The axis of the wheel is horizontal and moment of inertia about it is l/. The weight mg is attached to the end of the cord and falls from rest. After falling through a distance h, the angular velocity of the wheel will be

- (a) $[mgh]^{1/2}$ (b) $\left[\frac{2mgh}{1+2mr^2}\right]^{1/2}$ (c) $\left[\frac{2mgh}{1+mr^2}\right]^{1/2}$ (d) $\left[\frac{mgh}{1+mr^2}\right]^{1/2}$
- 29. A satellite of mass m is revolving in circular orbit of radius r round the earth. Its angular momentum w.r.t the centre of its orbit is (M = mass of earth, G = universal gravitational constant)
 - (a) $(GMmr)^{1/2}$ (b) $(GMm^2r)^{1/2}$ (c) $(GMm^2r^2)^{1/2}$ (d) $(GM^2m^2r)^{1/2}$
- 30. A ring and a disc roll on the horizontal surface without slipping with same linear velocity. If both have same mass and total kinetic energy of the ring is 4 J then total kinetic energy of the disc is
 - (a) 3J (b) 4J (c) 5J (d) 6J

31. A disc of radius 'R' abd thickness $\frac{R}{6}$ has moment of inertia 'l' about an axis passing through its centre and perpendicular to its plane. Disc is melted and recast into a soild sphere. The moment of inertia of a sphere about its diameter is

(a)
$$\frac{l}{5}$$
 (b) $\frac{l}{6}$ (c) $\frac{l}{32}$ (d) $\frac{l}{64}$

32. Let 'M' be the mass and 'L' be the length of a thin uniform rod. In first case, axis of rotation is passing through centre and perpendicular to the length of the rod. In second case axis of rotation is passing through one end and perpendicular to the length of the rod. The ratio of radius of gyration in first case to second case is

(a) 1 (b)
$$\frac{1}{2}$$
 (c) $\frac{1}{4}$ (d) $\frac{1}{8}$

33. An object of radius R and mass M is rolling horizontally without slipping with speed v. It then rolls up the hill to a maximum height $h = 3v^2/4g$. The moment of inertia of the object is (where, g = acceleration due to gravity)

(a)
$$\frac{2}{5}MR^2$$
 (b) $\frac{MR^2}{2}$ (c) MR^2 (d) $\frac{3}{2}MR^2$

34. The moment of inertia of a thin uniform rod rotating about the perpendicular axis passing through one end is *l*. The same rod is bent into a ring and its moment of inertia about the diameter is l_1 . The ratio l/l_1 is

(a)
$$\frac{4\pi}{3}$$
 (b) $\frac{8\pi^2}{3}$ (c) $\frac{5\pi}{3}$ (d) $\frac{8\pi^2}{5}$

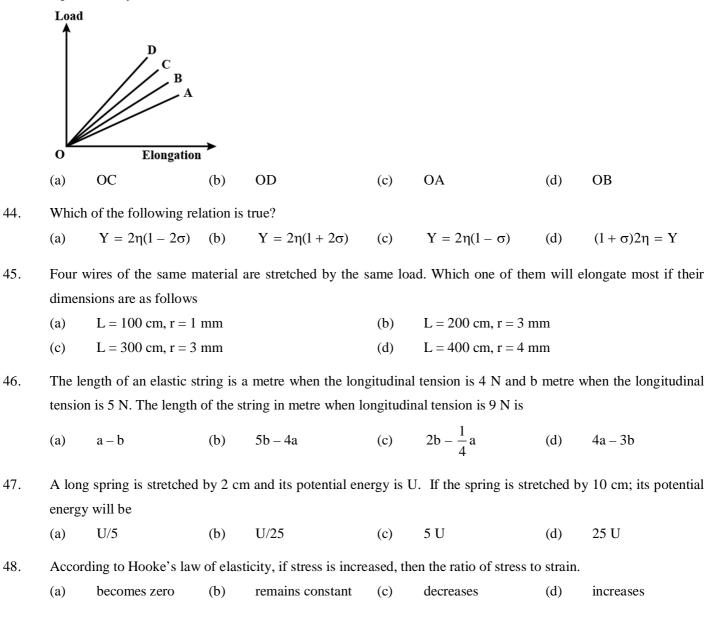
35. Three identical spheres each of mass 1 kg are placed touching one another with their centres in a straight line. Their centres are marked as A, B, C respectively. The distance of centre of mass of the system from A is

(a)
$$\frac{AB + AC}{2}$$
 (b) $\frac{AB + BC}{2}$ (c) $\frac{AC - AB}{3}$ (d) $\frac{AB + AC}{3}$

- 36. From Brewster's law, except for polished metallic surface, the polarising angle
 - (a) depends on wavelength and is different for different colours
 - (b) independent of wavelength and is different for different colours
 - (c) independent of wavelength and is same for different colours
 - (d) depends on wavelength and is same for different colours
- For the same angle of incidence, the angles of ^fraction in media P, Q, R and S are 50°, 40°, 30° 20° respectively.
 The speed of light is minimum in medium
 - (a) P (b) Q (c) R (d) S
- 38. Light is incident at an angle i on a glass slab. The reflected ray is completely polarised. The angle of refraction is (a) $90^{\circ} - i$ (b) $180^{\circ} - i$ (c) $90^{\circ} + i$ (d) i
- 39. When an unpolarised light of intensity I_0 is incident on a polarising sheet, the intensity of the light which does not get transmitted is
 - (a) $\frac{1}{2}l_0$ (b) $\frac{1}{4}l_0$ (c) zero (d) I_0

40. Two wires having same length and material are stretched by same force. Their diameters are in the ratio 1 : 3. The ratio of strain energy per unit volume for these two wires (smaller to larger diameter) when stretched is
(a) 3:1
(b) 9:1
(c) 27:1
(d) 81:1

41. Let a steel bar of length *l*, breadth b and depth d be loaded at the centre by a load W. Then the sag of bending of beam is (Y = Young's modulus of material of steel)


(a)
$$\frac{Wl^2}{2bd^2Y}$$
 (b) $\frac{Wl^3}{4bd^3Y}$ (c) $\frac{Wl^2}{2bd^3Y}$ (d) $\frac{Wl^3}{4bd^2Y}$

42. A string of length L and force constant K is stretched to obtain extension l. It is further stretched to obtain extension l_1 . The work done in second stretching is

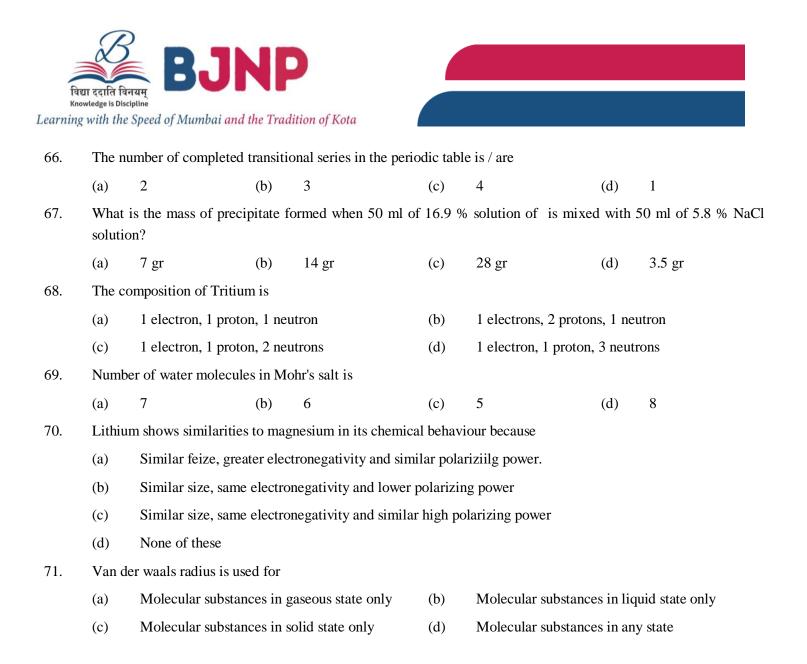
(a)
$$\frac{1}{2}Kl_1(2l+l_1)$$
 (b) $\frac{1}{2}Kl_1^2$ (c) $\frac{1}{2}K(l^2+l_1^2)$ (d) $\frac{1}{2}K(l_1^2-l^2)$

43. The load V elongation graph for four wires of the same materials shown in the figure. The thinnest wire is represented by the line.

- 49. The increase in pressure required to decrease the 200 L volume of a liquid by 0.004% (in kPa) is (Bulk modulus of the liquid = 2100 MPa)
 - (a) 8.4 (b) 84 (c) 92.4 (d) 168
- 50. The force constant of a wire is K and that of another wire is 2K. When both the wires are stretched, then the work done
 - (a) $W_2 = 2W_1^2$ (b) $W_2 = 2W_1$ (c) $W_2 = W_1$ (d) $W_2 = 0.5 W_1$

Date: 20.11.2022

ABHIMANYU BATCH


CHEMISTRY : REVISION TEST 3 (SET A)

Topics: Mole Concept, Redox Reaction, Periodic Properties, S Block, Hydrogen, Atomic Structure, Gaseous States and Chemical Equilibrium

51.	If value	e of azimuthal quant	tum num	ber is 2, then total po	ssible v	alues of magnetic qua	intum nu	mber will be
	(a)	7	(b)	5	(c)	3	(d)	2
52.	Accord	ling to kinetic theory	y of gase	es,				
	(a)	There are intermol	ecular a	ttractions				
	(b)	Molecules have co	nsiderat	ole volume				
	(c)	No intermolecular	attractio	ons				
	(d)	The velocity of mo	olecules	decreases after each c	collision			
53.	An elei	ment which never ha	as a posi	tive oxidation numbe	r in any	of itscompounds		
	(a)	Boron	(b)	Oxygen	(c)	Chlorine	(d)	Fluorine
54.	The alk	ali metal widely use	ed in ph	otoelectric cells is				
	(a)	Κ	(b)	Rb	(c)	Cs	(d)	Na
55.	How do	bes the surface tensi	on of a l	liquid vary with incre	ase in te	mperature?		
	(a)	Remains same			(b)	Decreases		
	(c)	Increases			(d)	No regular pattern is	s followe	ed
56.	The nu	mber of significant	figures i	n 0.0045 are				
	(a)	two	(b)	three	(c)	four	(d)	five

57. In Habers process, the volume at S.T.P of ammonia relative to the total volume of reactants at STP is : (a) One fourth (b) One half (c) Same (d) Three fourth 58. The following are some statements about Mendeleeff's periodic table (i) It is based on increasing order of atomic numbers (ii) Mendeleeff corrected the atomic weight of some elements like Be, In, Os (iii) (Ar, K) (Co, Ni) (Te, I) are three inverted pairs All are correct (b) ii and iii are correct (a) (c) iii is correct (d) i and iii are correct 59. H₂O₂ is a weak acid (a) (b) weak base (c) neutral (d) strong base The compressibility factor for an ideal gas is 60. (a) 1.5 (b) 1.0 2.0 (c) (d) ∞ Valency of the metal atom with respect to oxygen is maximum in 61. Mn_2O_7 (a) (b) OsO_4 (c) MnO (d) CrO_3 62. The number of moles of $K_2Cr_2O_7$ reduced by one mole of Sn^{2+} ions is (a) 1/3(b) 1/6(c) 2/3(d) 3/4 Arrange F, Cl, O and N in decreasing order of electron negativity. 63. (a) O > F > N > Cl(b) F > N > Cl > O(c) Cl > F > N > O(d) F > O > N > ClChlorophyll, the green component of plants contains 64. Ca^{2+} Be^{2+} Mg^{2+} Ba²⁺ (a) (b) (c) (d) 65. The number of hydroxide ions produced by one molecule of Na₂CO₃ onhydrolysis 4 2 0 (a) (b) 3 (d) (c) **Space for Rough Work**

- 72. The wavelength of a spectral line for an electronic transition is inversely related to
 - (a) the number of electrons undergoing the transition
 - (b) the nuclear charge of the atom
 - (c) the difference in the energy of the energy levels involved in the transition
 - (d) the velocity of the electron undergoing the transition
- 73. The RMS velocity of CO_2 at a temperature "T" is x cm/sec. At what temperature, the RMS velocity of CO_2 would be 4x
 - (a) 16T (b) 2T (c) 4T (d) 32T
- 74. Heavy water is used as
 - (a) Moderator in nuclear reactors
 - (b) Tracer for study of reaction mechanism
 - (c) Exchange compound to know the basicity of oxo acids
 - (d) All of these
- 75. A potter wishes to make a deep blue glaze. Which one of these available chemicals should be mixed?
- Cuprous oxide (b) Nickel oxide Cobalt oxide (d) Iron oxide (a) (c) 76. Dipole - induced dipole interactions are present in which of the following pairs: H₂O and alcohol (b) Cl₂ and CCl₄ (c) HCl and He atoms SiF₄ and He atoms (a) (d) 77. Which of the following is not a redox reaction $2Rb + 2H_2O \rightarrow 2RbOH + H_2$ $2CuI_2 \rightarrow 2CuI + I_2$ (a) (b) $2H_2O_2 \rightarrow 2H_2O + O_2$ $4\text{KCN} + \text{Fe}(\text{CN})_2 \rightarrow \text{K}_4\text{Fe}(\text{CN})_6$ (c) (d) 78. Number of electrons of manganese with magnetic quantum number value '0' is (a) 1 (b) 8 (c) 12 (d) 13

- 79. The pressure of a 1:4 mixture of dihydrogen and dioxygen enclosed in a vesselis one atmosphere. What would be the partial pressure of dioxygen?
 - (a) 0.8×10^5 atm (b) 0.008 Nm^{-2} (c) $8 \times 10^4 \text{ Nm}^{-2}$ (d) 0.25 atm
- 80. The sulphate of a metal M contains 9.87% of M. This sulphate is isomorphous with $ZnSO_4$. $7H_2O$. The atomic weight of M is
 - (a) 40.3 (b) 36.3 (c) 24.3 (d) 11.3
- 81. A certain hydrate has the formula $MgSO_4$. xH_2O . A quantity of 54.2 g of the compound is heated in an oven to drive off the water .If the steam generated exerts a pressure of 24.8 atm in a 2.0 L container at 120° C, calculate x.
 - (a) 2 (b) 5 (c) 6 (d) 7
- 82. When excess CO_2 is sent into lime water solution
 - (a) milky white precipitate of $CaCO_3$ is formed (b) milky white precipitate of $Ca(HCO_3)$ is formed
 - (c) $Ca(HCO_3)_2$ formed, will be changed into $CaCO_3$ (d) $CaCO_3$ formed, will be changed into $Ca(HCO_3)_2$
- 83. Which of the following has same number of molecules as in 16 gr. of oxygen
 - (a) $16 \text{ gr. of } O_3$ (b) $16 \text{ gr. of } SO_3$ (c) $32 \text{ gr. of } SO_2$ (d) All of these
- 84. An element has successive ionization enthalpies as 940 (first), 2080, 3090,4140, 7030, 7870, 16000 and 19500 kJ mol⁻¹. To which group of the periodic table does this element belong?
 - (a) 14 (b) 15 (c) 16 (d) 17
- 85. A reversible chemical reaction having two reactants in equilibrium. If the concentrations of the reactants are doubled, then the equilibrium constant will
- (a) Also be doubled
 (b) Be halved
 (c) Become one-fourth
 (d) Remain the same
 86. The photons of light having a wavelength 4000 Å to provide 1 J of energy are
 - (a) 6.023×10^{23} (b) 6.023×10^{18} (c) 2.01×10^{18} (d) 2.01×10^{23}

87.		The first IE of lithium is 5.4eV and first electron affinity of Cl is 3.6 eV. The value of Δ H for the reaction $Li_{(g)} + Cl_{(g)} \rightarrow Li_{(g)}^{+} + Cl_{(g)}^{-}$ is eV								
	(a)	+1.8	(b)	+2.8	(c)	-2.8	(d)	+9		
88.	Hydr	ogen cannot redu	ce							
	(a)	Hot CuO	(b)	Fe_2O_3	(c)	Hot SnO ₂	(d)	Hot Al ₂ O ₃		
89.	The c	covalent metal oxi	ide among	the following is						
	(a)	MgO	(b)	BaO	(c)	CaO	(d)	BeO		
90.	The c	correct order regar	rding the co	ovalent nature of h	ydrides is					
	(a)	$BeH_2 > MgH_2$	$> CaH_2 > S$	$SrH_2 > BaH_2$	(b)	$MgH_2 > CaH_2 >$	> BeH ₂ $>$ B	$aH_2 > SrH_2$		
	(c)	$BaH_2 > MgH_2$	$> CaH_2 > 1$	$BeH_2 > SrH_2$	(d)	$BeH_2 \! > \! CaH_2 \! > \! MgH_2 \! > \! BaH_2 \! > \! SrH_2$				
91.	RbO ₂ is									
	(a)) Peroxide and paramagnetic			(b)	Peroxide and diamagnetic				
	(c)	Superoxide an	d paramagi	netic	(d)	Superoxide and diamagnetic				
92.	Lithiu	um forms Li ₂ O w	hile other a	lkali metals form p	eroxides a	nd super oxidesbe	cause			
	(a)	IP of Li^+ is more	ore							
	(b)	hydration energy of is more								
	(c)	The smaller Li^+ ion cannot stabilize the larger peroxide or super oxideions								
	(d)	Both (a) & (b)								
93.	Whic	h of the following	g electron c	configuration corre	sponds to th	ne mostelectroposi	tive charac	cter?		
	(a)	[He]2s ¹	(b)	$[He]2s^2$	(c)	[Xe]6s ¹	(d)	$[Xe]6s^2$		
94.	The v	vapour density of	a tribasic a	cid is x. The equiv	alent mass o	of that acid is				
	(a)	x/3	(b)	x – 3	(c)	2x/3	(d)	2x - 3		

95.	Light	th of wavelength ' λ ' falls on a metal having work function $\frac{hc}{\lambda_0}$. Photoelectric effect will take place only if									
	(a)	$\lambda \leq \lambda_0$	(b)	$\lambda \geq 2\lambda_0$	(c)	$\lambda \geq \lambda_0$	(d)	$\lambda \geq \frac{\lambda_0}{2}$			
96.		a copper turnings are use copper	e added t	to silver nitrate soluti	on, a blı	ue coloured solution i	s formed	l after some time. It is			
	(a)	is more noble that	ın silver		(b)	forms a blue colou	red com	plex with AgNO ₃			
	(c)	is oxidised to Cu	2+		(d)	is reduced to Cu^{2+}					
97.	The r	eported element Eka	amercury	with atomic number	: 112 bel	ongs to the group					
	(a)	IIB	(b)	IIIB	(c)	IVB	(d)	VIB			
98.	Al ha	s lower ionization p	otential	than that of Mg becau	ise						
	(a)	Al atom is bigger than Mg atom									
	(b)	Mg atom is bigge	Mg atom is bigger than Al atom								
	(c)	All electrons in M	Ag are pa	aired, but those of Al	are not						
	(d)	Al belongs to a h	igher gro	oup							
99.	Whic	h of the following p	air exhib	oit similar polarising p	power?						
	(a)	$\mathrm{Be}^+,\mathrm{Al}^{3+}$	(b)	B ⁺ , Si ⁴⁺	(c)	Li^+ , Mg^+	(d)	$\mathrm{Li}^{+},\mathrm{Mg}^{2+}$			
100.	Whic	h of the following is	s an amp	hoteric hydroxide?							
	(a)	Sr(OH) ₂	(b)	Ca(OH) ₂	(c)	Mg(OH) ₂	(d)	Be(OH) ₂			

Max. Marks: 100

ABHIMANYU BATCH PHYSICS : REVISION TEST-3 (SET A) ANSWER KEY Circular Motion + Cravitation + Wave Optics + Potationa

Topic: Ray Optics + Circular Motion + Gravitation + Wave Optics + Rotational Motion + Elasticity

1.	(c)	2.	(d)	3.	(c)	4.	(b)	5.	(c)
б.	(d)	7.	(d)	8.	(b)	9.	(c)	10.	(c)
11.	(c)	12.	(c)	13.	(c)	14.	(b)	15.	(a)
16.	(a)	17.	(b)	18.	(d)	19.	(d)	20.	(b)
21.	(a)	22.	(d)	23.	(a)	24.	(a)	25.	(b)
26.	(a)	27.	(b)	28.	(c)	29.	(b)	30.	(a)
31.	(a)	32.	(b)	33.	(b)	34.	(b)	35.	(d)
36.	(a)	37.	(d)	38.	(a)	39.	(a)	40.	(b)
41.	(b)	42.	(d)	43.	(c)	44.	(d)	45.	(a)
46.	(b)	47.	(d)	48.	(b)	49.	(b)	50.	(b)

CHEMISTRY : REVISION TEST-3 (SET A) ANSWER KEY

Topics: Mole Concept, Redox Reaction, Periodic Properties, S Block, Hydrogen, Atomic Structure, Gaseous States and Chemical Equilibrium

51.	(b)	52.	(c)	53.	(d)	54.	(c)	55.	(b)
56.	(a)	57.	(b)	58.	(b)	59.	(a)	60.	(b)
61.	(b)	62.	(a)	63.	(d)	64.	(c)	65.	(b)
66.	(b)	67.	(a)	68.	(c)	69.	(b)	70.	(c)
71.	(c)	72.	(c)	73.	(a)	74.	(d)	75.	(c)
76.	(c)	77.	(d)	78.	(d)	79.	(c)	80.	(c)
81.	(d)	82.	(d)	83.	(c)	84.	(c)	85.	(d)
86.	(c)	87.	(a)	88.	(d)	89.	(d)	90.	(a)
91.	(c)	92.	(c)	93.	(c)	94.	(c)	95.	(a)
96.	(c)	97.	(a)	98.	(c)	99.	(d)	100.	(d)